Problema 8.1. Pentru a pleca în excursii, toți cei 919 participanți la Olimpiada Internațională de Matematică au fost repartizați în autocare și microbuze: câte 36 de persoane în fiecare autocar și câte un număr egal de persoane în fiecare din cele 41 de microbuze. De câte autocare a fost nevoie și câte persoane au urcat într-un microbuz?

Rezolvare. Fie \(x \) numărul autocarelor, \(y \) numărul de persoane într-un microbuz. Conform condiției,

\[
36x + 41y = 919; \quad x, y \in \mathbb{N}. \tag{1}
\]

(1) \(\Rightarrow x = \frac{919 - 41y}{36} = 25 - \frac{y}{36} + \frac{19 - 5y}{36} \). Fie \(19 - 5y = 36k, \ k \in \mathbb{Z} \) \(\Rightarrow y = \frac{19 - 36k}{5} = 3 - 7k + \frac{4 - k}{5} \).

Fie \(4 - k = 5n; \ n \in \mathbb{Z} \) \(\Rightarrow k = 4 - 5n \). Atunci \(y = \frac{19 - 36(4 - 5n)}{5} = 36n - 25 \). Dar atunci \(x = 25 - (36n - 25) + \frac{19 - 5(36n - 25)}{36} = -41n + 54 \). Așadar, \(\{ x = -41n + 54, \ y = 36n - 25 \} \) cu \(n \in \mathbb{Z} \).

Cum \(x, y > 0 \), rezultă \(\{ x = -41n + 54, \ y = 36n - 25 \} \) \(\Rightarrow \{ n < \frac{54}{41}, \ n > \frac{25}{36} \} \). Cum \(n \in \mathbb{Z} \), rezultă \(n = 1 \). Atunci \(x = -41 \cdot 1 + 54 = 13; \ y = 36 \cdot 1 - 25 = 11 \). Se verifică ușor, că numerele aflate satisfac ecuația.

Răspuns: 13 autocare; 11 persoane într-un microbuz.

Problema 8.2. Să se afle toate perchețile \((x, y)\) de numere naturale prime, care satisfac ecuația

\[
x^2 + 5y + 24 = y^2 + 11x.
\]

Rezolvare. Ecuatia se scrie astfel:

\[
(x - y - 3)(x + y - 8) = 0. \tag{1}
\]

Această descompunere poate fi obținută prin diverse metode. De exemplu, se scrie ecuația din enunț astfel:

\[
x^2 - 11x + 24 = y^2 - 5y. \tag{2}
\]

Prin separarea pătratului perfect se obține:

\[
x^2 - 11x = x^2 - 2 \cdot x \cdot \frac{11}{2} + \left(\frac{11}{2}\right)^2 = \left(x - \frac{11}{2}\right)^2 - \frac{121}{4};
\]

\[
y^2 - 5y = y^2 - 2 \cdot y \cdot \frac{5}{2} + \left(\frac{5}{2}\right)^2 = \left(y - \frac{5}{2}\right)^2 - \frac{25}{4}.
\]

Ecuatia (2) ia forma \((x - \frac{11}{2})^2 - \frac{121}{4} + 24 = (y - \frac{5}{2})^2 - \frac{25}{4}\), sau \((x - \frac{11}{2})^2 - (y - \frac{5}{2})^2 = 0 \Rightarrow (x - \frac{11}{2} - y + \frac{5}{2})(x - \frac{11}{2} + y - \frac{5}{2}) = 0\), adică (1).

Din (1) rezultă \(x = y = 3; \ x + y = 8 \). Din \(x - y = 3 \Rightarrow y - par\), adică \(y = 2 \). Dar atunci \(x = 5 \). O soluție este \(x = 5, \ y = 2 \).

Ecuatia \(x + y = 8 \) are cele două soluții \(x = 3, \ y = 5 \) și \(x = 5, \ y = 3 \).

Răspuns: 1) \(x = 5, \ y = 2 \); 2) \(x = 3, \ y = 5 \); 3) \(x = 5, \ y = 3 \).

Problema 8.3. Fie triunghiul ABC cu \(m(\angle B) = 105^\circ \) și \(m(\angle C) = 30^\circ \). Dacă \(D \in (BC) \) astfel incât \([AD] \) este mediana în triunghi, să se calculeze măsura unghiului \(DAC \).

Rezolvare. Fie \(BE \) înălțime în triunghiul \(ABC \). Atunci \(BE = BD = DC \) (cateta, ce se opune unghiului de \(30^\circ \)). În triunghiul dreptunghic \(BEC \), \(ED \) este mediana corespunzătoare ipotenuzei, deci \(ED = BD = DC \). Rezultă că triunghiul \(BED \) este echilateral, deci are măsuri unghiurilor de \(60^\circ \). Obținem ușor că \(m(\angle BAC) = 45^\circ \), deci \(BE = AE \). Aceasta înseamnă că triunghiul \(AED \) este isoscel cu \(AE = ED \) și \(m(\angle AED) = 90^\circ + 60^\circ = 150^\circ \). Dar atunci \(m(\angle DAC) = \frac{(180^\circ - 150^\circ)}{2} = 15^\circ \).
Problema 8.4. Să se arate, că oricare ar fi \(x, y \in \mathbb{R} \), are loc inegalitatea \(x^4 + y^4 \geq xy(x^2 + y^2) \).

Rezolvare. Din inegalitatea dată obținem consecutiv:

\[
x^4 + y^4 \geq xy(x^2 + y^2) \iff x^4 + y^4 - x^3y - xy^3 \geq 0 \iff x^3(x - y) - y^3(x - y) \geq 0 \iff (x - y)(x^3 - y^3) \geq 0 \iff (x - y)^2(x^2 + xy + y^2) \iff (x - y)^2 \left(x + \frac{y}{2} \right)^2 + \frac{3y^2}{4} \geq 0.
\]

Ultima inegalitate este adevărată și este echivalentă cu cea din enunț. Afirmația este demonstrată.
BAREM DE CORECTARE

Notă: Oricare altă metodă de rezolvare corectă se apreciază cu punctaj maxim.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Scor maxim</th>
<th>Răspuns corect</th>
<th>Etapele rezolvării</th>
<th>Punctaj acordat</th>
<th>Observații</th>
</tr>
</thead>
</table>
| **8.1.** | 7p. | 13; 11 | - Alcătuirea ecuației $36x + 41y = 919$
- Aflarea soluțiilor în \mathbb{Z}: $x = -41n + 54$; $y = 36n - 25$
- Selectarea soluției în numere naturale | 1p.
4p.
2p. |
| **8.2.** | 7p. | $x = 5, y = 2$;
$x = 3, y = 5$;
$x = 5, y = 3$. | - Ecuatia se aduce la forma $(x - y - 3)(x + y - 8) = 0$
- Se află soluția $x = 5, y = 2$ a ecuației $x - y - 3 = 0$
- Se află 2 soluții ale ecuației $x + y - 8 = 0$ | 3p.
2p.
2p. |
| **8.3.** | 7p. | 15° | - Obținerea $BE = BD = DC$
- Obținerea că $ED = BD = DC$
- Concluzia că $\triangle BDE$ este echilateral
- Obținerea că $BE = AE$
- Obținerea $\angle AED = \text{isoscel, deci } m(\angle AED) = 150^\circ$
- Concluzia că $m(\angle DAC) = 15^\circ$ | 1p.
1p.
1p.
1p.
2p. |
| **8.4.** | 7p. | | - Obținerea $(x - y)(x^2 - y^2) \geq 0$
- Obținerea $(x - y)^2(x^2 + xy + y^2) \geq 0$
- Obținerea $(x - y)^2 \left[(x + \frac{3}{2}y)^2 + \frac{3}{2}y^2\right] \geq 0$ | 2p.
2p.
3p. |